Experimental Flow Boiling Study of R245a at High Reduced Pressures in a Large Diameter Horizontal Tube

Author:

Kaya AlihanORCID,Lecompte StevenORCID,De Paepe MichelORCID

Abstract

Evaporators used in organic Rankine cycles (ORC) are designed using existing flow boiling correlations that are mainly based on HVAC&R data. However, the ORC evaporators employed in the industry typically have larger diameters and operational conditions at higher reduced pressures compared to the HVAC&R applications. The present study presents the results of flow boiling heat transfer experiments in operational conditions that are representative for an industrial waste heat recovery low-temperature ORC’s evaporator tube, by being performed at high reduced pressures and in a large-diameter horizontal tube with R245fa as working fluid. The measurements are performed within a range of mass flux, saturation temperature and heat flux at 83–283 kg/m2s, 85–120 °C (8.9–19.2 bar) and 17–29 kW/m2, respectively. Test section is a round and plain horizontal carbon steel tube with 21 mm I.D., 2.5 m length. 513 local two-phase heat transfer coefficients are recorded. The experimental results are compared with each other to reveal heat transfer coefficient trends with respect to varying experimental conditions. Four distinctive heat transfer zones are observed, namely, the nucleate boiling dominant (NBD) zone, weakening nucleate boiling dominance (WNBD) zone, flow boiling zone (FBZ) and the dry-out zone (DOZ). Heat transfer coefficient vs vapor quality trends partly resembled CO2 flow boiling results reported in the literature. Two flow boiling correlations moderately predicted the data.

Funder

Ghent University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3