Providing Convenient Indoor Thermal Comfort in Real-Time Based on Energy-Efficiency IoT Network

Author:

Brik BouzianeORCID,Esseghir Moez,Merghem-Boulahia Leila,Hentati Ahmed

Abstract

Monitoring the thermal comfort of building occupants is crucial for ensuring sustainable and efficient energy consumption in residential buildings. It enables not only remote real-time detection of situations, but also a timely reaction to reduce the damage made by harmful situations in targeted buildings. In this paper, we first design a new Internet of Things (IoT) architecture in order to provide remote availability of both indoor and outdoor conditions, with respect to the limited energy of IoT devices. We then build a multi-output prediction model of indoor parameters using a random forest learning algorithm, and based on a longitudinal real dataset of one year. Our prediction model considers outdoor conditions to predict the indoor ones. Hence, it helps to detect discomfort situations in real-time when comparing predicted variables to real ones. Furthermore, when detecting an indoor thermal discomfort, we provide a new genetic-based algorithm to find the most suitable values of indoor parameters, enabling the improvement of the indoor occupants’ thermal comfort. Numerical results show the efficiency of our prediction scheme, reaching an accuracy of 96%, as well as our genetic-based scheme in optimizing the indoor thermal parameters by 85%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3