Ship-Based Carbon Capture and Storage: A Supply Chain Feasibility Study

Author:

Buirma MaxORCID,Vleugel JaapORCID,Pruyn JeroenORCID,Doedée Vincent,Schott DingenaORCID

Abstract

The International Maritime Organisation (IMO) calls for the maritime industry to restrict its CO2 emissions by −40% (IMO2030) and −70% (IMO2050). This paper answered the following research question: “Which technical, economic and emissions-related conditions predominantly determine the feasibility of a conceptual supply chain of liquid CO2 that is captured from the exhaust gases of LNG powered offshore vessels?” The captured CO2 is transported to land where it is utilized by a final customer. The study followed a systems engineering approach. Problem definition was followed by a requirements analysis (technology, emissions, economy and operations), design with scenarios and a case study with realistic vessel deployment, modeling and evaluation. All designs have technical uncertainties and financial risks, but the sale of captured CO2 could be a crucial advantage of the proposed concept over other concepts. The main conclusion is that emission and financial targets (payback time) can be met by aligning the offshore transportation distance with the capacity to store CO2 on board and the available means of transport to the final user. Specialists from the vessel owner indicate that capturing, storage and off-loading is likely to have minor implications for the vessel availability and regular operations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. Quantification of Emissions from Ships Associated with Ship Movements between Ports in the European Communityhttps://ec.europa.eu/environment/air/pdf/chapter2_ship_emissions.pdf

2. A decision support system for vessel speed decision in maritime logistics using weather archive big data

3. Third IMO Greenhouse Gas Study 2014https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Third%20Greenhouse%20Gas%20Study/GHG3%20Executive%20Summary%20and%20Report.pdf

4. Initial IMO Strategy on Reduction of GHG Emissions from Shipshttps://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissionsfrom-ships.aspx

5. Letter from KVNR to Ship Owners on Impact of Announced ETS for Shipping;van der Minkelis,2020

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3