Abstract
Ultra-fast charging infrastructures are gaining increasing interest thanks to their ability to reduce the charging-time of plug-in electric vehicles to values comparable to those of the refueling of traditional vehicles in gas stations. This is a consequence of the increasing rated power of both on-board batteries and charging equipment. On the other hand, the increased values of charging power have led to an increased impact on the power distribution networks, particularly in terms of line currents and bus voltages. In presence of large penetration of ultra-fast charging devices, in fact, both currents and voltages are affected by larger variations whose values can exceed the admissible limits imposed by the technical constraints and by the levels of quality of service. In order to reduce the impact of this typology of vehicles’ charging on the electrical infrastructure, in this paper a methodology is presented which allows managing a microgrid in presence of ultra-fast charging stations by satisfying the constraints of the grid, while preserving the expected short charging-time for electric vehicles. To this end, a proper optimal strategy is proposed which coordinates the demands of electric vehicles and of the other loads of the microgrid with the power provided by the renewable energy generation resources. The proposed approach aims to optimally control the active and reactive power of charging stations and renewable generation units and to minimize the charging time of a fleet of plug-in electric vehicles while satisfying the constraints on the technical aspects and on the quality of service. The proposed approach has been tested on a test system and the results, proposed in the last part of the paper, demonstrate the feasibility of the proposed approach.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献