Abstract
Applications requiring services from modern wireless networks, such as those involving remote control and supervision, call for maintaining the timeliness of information flows. Current research and development efforts for 5G, Internet of things, and artificial intelligence technologies will benefit from new notions of timeliness in designing novel sensing, computing, and transmission strategies. The age of information (AoI) metric and a recent related urgency of information (UoI) metric enable promising frameworks in this direction. In this paper, we consider UoI optimization in an interactive point-to-point system when the updating terminal is resource constrained to send updates and receive/sense the feedback of the status information at the receiver. We first propose a new system model that involves Gaussian distributed time increments at the receiving end to design interactive transmission and feedback sensing functions and develop a new notion of UoI suitable for this system. We then formulate the UoI optimization with a new objective function involving a weighted combination of urgency levels at the transmitting and receiving ends. By using a Lyapunov optimization framework, we obtain a decision strategy under energy resource constraints at both transmission and receiving/sensing and show that it can get arbitrarily close to the optimal solution. We numerically study performance comparisons and observe significant improvements with respect to benchmarks.
Funder
National Science Foundation
Subject
General Physics and Astronomy
Reference53 articles.
1. Kaul, S., Yates, R., and Gruteser, M. Real-time status: How often should one update?. Proceedings of the IEEE INFOCOM.
2. Non-Linear Age of Information: An Energy Efficient Receiver-Centric Approach;Miridakis;IEEE Wirel. Commun. Lett.,2022
3. On the role of age of information in the Internet of Things;Abd-Elmagid;IEEE Commun. Mag.,2019
4. The age of information in a discrete time queue: Stationary distribution and non-linear age mean analysis;Kosta;IEEE J. Sel. Areas Commun.,2021
5. Zheng, X., Zhou, S., and Niu, Z. Context-Aware Information Lapse for Timely Status Updates in Remote Control Systems. Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献