Author:
Dai Caiyan,Chen Ling,Hu Kongfa,Ding Youwei
Abstract
This paper presents a method to minimize the spread of negative influence on social networks by contact blocking. First, based on the infection-spreading process of COVID-19, the traditional susceptible, infectious, and recovered (SIR) propagation model is extended to the susceptible, non-symptomatic, infectious, and recovered (SNIR) model. Based on this model, we present a method to estimate the number of individuals infected by a virus at any given time. By calculating the reduction in the number of infected individuals after blocking contacts, the method selects the set of contacts to be blocked that can maximally reduce the affected range. The selection of contacts to be blocked is repeated until the number of isolated contacts that need to be blocked is reached or all infection sources are blocked. The experimental results on three real datasets and three synthetic datasets show that the algorithm obtains contact blockings that can achieve a larger reduction in the range of infection than other similar algorithms. This shows that the presented SNIR propagation model can more precisely reflect the diffusion and infection process of viruses in social networks, and can efficiently block virus infections.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献