Composition and Antioxidant Activity, Supercritical Carbon Dioxide Extraction Extracts, and Residue after Extraction of Biologically Active Compounds from Freeze-Dried Tomato Matrix

Author:

Urbonavičienė Dalia,Bobinas Česlovas,Bobinaitė RamunėORCID,Raudonė LinaORCID,Trumbeckaitė Sonata,Viškelis Jonas,Viškelis PranasORCID

Abstract

Supercritical carbon dioxide extraction (SCE-CO2) is an attractive, green technology that is used for the recovery of biologically active compounds from plant material. The antioxidant potential of lipophilic fractions (extract obtained with SCE-CO2) and hydrophilic fractions (extracts obtained from the residue after extraction) obtained from a matrix of freeze-dried tomatoes (cvs. “Admiro” F1, “Jurgiai”, “Vilina”, “Pirmutis”, and “Skariai”) was assessed via different antioxidant activity methods. The total amount of polyphenols, carotenoids, and carotenoid isomers before and after SCE-CO2 extraction was also determined. To investigate the effect of the SCE-CO2 extract on the viability of cancer cells, rat glioblastoma C6 cells were chosen. The SCE-CO2 yielded an average of 800 mg of lipophilic fraction per 100 g of freeze-dried tomatoes. The ABTS•+ scavenging activity of the extract was 251 ± 3.4 µmol TE/g. After SCE-CO2 extraction, the DPPH•-RSA of the freeze-dried tomato matrix was 7 to 12% higher. There was a strong positive correlation (R = 0.84) between the total polyphenolics content and the DPPH•-RSA of the tomato samples. The SCE-CO2 increased the radical scavenging activity of the extraction residue, indicating that a considerable fraction of the hydrophilic compounds with particular antioxidant capacity remain unextracted from the tomato matrix. Our results reveal the cytotoxic effect of lycopene extract rich in cis-isomers (62% cis-isomers of the total lycopene content) on rat glioblastoma C6 cells. The viability of the glioblastoma C6 cells significantly decreased (−42%) at a total lycopene concentration of 2.4 µM after 24 h of incubation.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3