Development and Laboratory Evaluation of an Online Controlling Algorithm for Precision Tillage

Author:

Sabouri Yashar,Abbaspour-Gilandeh YousefORCID,Solhjou Aliakbar,Shaker Mohammad,Szymanek MariuszORCID,Sprawka MaciejORCID

Abstract

Soil compaction management relies on costly annual deep tillage. Variable-depth tillage or site-specific tillage modifies the physical properties of the soil at the required zones for the growth of crops. In this study, a depth control system was designed for the subsoiler of the tillage at various depths. For this purpose, an algorithm was written to investigate the subsoiler location and soil compaction. A program was also developed to implement this algorithm using Kinco Builder Software to control the subsoiler depth, which was evaluated on the experimental platform. In this study, four compression sensors were used at a distance of 10 cm up to a depth of 40 cm on the blade mounted at the front of the tractor. The data of these sensors were used as the input and compared with the pressure baseline limit (2.07 MPa), and with the priority to select the greater depth, the depth of subsoiler was determined. At all three modes of sensor activation (single, collective, and combined), this system was able to operate the hydraulic system of the tractor and place the subsoiler at the desired depth through the use of the position sensors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference21 articles.

1. APPLICATION OF A STRAIN GAUGE ARRAY TO ESTIMATE SOIL MECHANICAL IMPEDANCE ON–THE–GO

2. Soil translocation by narrow openers with various rake angles

3. Subsoil compaction: risk, avoidance, identification and alleviation

4. Study of the effective parameters of an on-the-go single blade soil mechanical resistance measurement system;Rahimi-Ajdadi;Int. J. Nat. Eng. Sci.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3