Modeling of Oxidative Coupling of Methane for Manufacture of Olefins—Part I: CFD Simulations

Author:

Fontoura Tahyná B.1ORCID,De Jesus Normando J. C.2,Pinto José Carlos1ORCID

Affiliation:

1. Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, RJ, Brazil

2. Braskem S.A., Rua Marumbi, 1001, Campos Elíseos, Duque de Caxias 25221-000, RJ, Brazil

Abstract

This paper presents a comprehensive computational fluid dynamics (CFD) model for describing the oxidative coupling of methane (OCM) carried out in fixed-bed reactors for olefin production. Initially, a single pellet model was developed and implemented to describe the heat and mass transfer within the pellet and between the gaseous and solid phases. Subsequently, sensitivity analyses were performed to assess the impact of pellet arrangement and feed conditions on the heat and mass transfer rates, subsequently affecting concentration and temperature profiles. As indicated by the simulations, a high ethylene content could be obtained with the increase in the CH4/O2 ratio, aligning well with previous experimental studies. Furthermore, it was observed that pellet arrangement can significantly affect the reactor performance. Additionally, the behavior of temperature and concentration in the gaseous and solid phases can be very different, such that pseudo-homogeneous modeling approaches should not be assumed a priori. Finally, the simulated temperature differences between the gaseous and solid phases were very substantial and above 100 °C, indicating the occurrence of catalyst auto-ignition behavior.

Funder

CNPq

FAPERJ

Braskem SA

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3