Imbedding Pd Nanoparticles into Porous In2O3 Structure for Enhanced Low-Concentration Methane Sensing

Author:

Zuo Xiaoyang,Yang Zhengyi,Kong Jing,Han Zejun,Zhang Jianxin,Meng Xiangwei,Hao Shuyan,Wu Lili,Wu Simeng,Liu Jiurong,Wang ZhouORCID,Wang FenglongORCID

Abstract

Methane (CH4), as the main component of natural gas and coal mine gas, is widely used in daily life and industrial processes and its leakage always causes undesirable misadventures. Thus, the rapid detection of low concentration methane is quite necessary. However, due to its robust chemical stability resulting from the strong tetrahedral-symmetry structure, the methane molecules are usually chemically inert to the sensing layers in detectors, making the rapid and efficient alert a big challenge. In this work, palladium nanoparticles (Pd NPs) embedded indium oxide porous hollow tubes (In2O3 PHTs) were successfully synthesized using Pd@MIL-68 (In) MOFs as precursors. All In2O3-based samples derived from Pd@MIL-68 (In) MOFs inherited the morphology of the precursors and exhibited the feature of hexagonal hollow tubes with porous architecture. The gas-sensing performances to 5000 ppm CH4 were evaluated and it was found that Pd@In2O3-2 gave the best response (Ra/Rg = 23.2) at 370 °C, which was 15.5 times higher than that of pristine-In2O3 sensors. In addition, the sensing materials also showed superior selectivity against interfering gases and a rather short response/recovery time of 7 s/5 s. The enhancement in sensing performances of Pd@In2O3-2 could be attributed to the large surface area, rich porosity, abundant oxygen vacancies and the catalytic function of Pd NPs.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3