Abstract
Forest ecosystems in an ecotone and their dynamics to climate change are growing ecological and environmental concerns. Phenology is one of the most critical biological indicators of climate change impacts on forest dynamics. In this study, we estimated and visualized the spatiotemporal patterns of forest phenology from 2001 to 2017 in the Qinling Mountains (QMs) based on the enhanced vegetation index (EVI) from MODerate-resolution Imaging Spectroradiometer (MODIS). We further analyzed this data to reveal the impacts of climate change and topography on the start of the growing season (SOS), end of the growing season (EOS), and the length of growing season (LOS). Our results showed that forest phenology metrics were very sensitive to changes in elevation, with a 2.4 days delayed SOS, 1.4 days advanced EOS, and 3.8 days shortened LOS for every 100 m increase in altitude. During the study period, on average, SOS advanced by 0.13 days year−1, EOS was delayed by 0.22 days year−1, and LOS increased by 0.35 day year−1. The phenological advanced and delayed speed across different elevation is not consistent. The speed of elevation-induced advanced SOS increased slightly with elevation, and the speed of elevation-induced delayed EOS shift reached a maximum value of 1500 m from 2001 to 2017. The sensitivity of SOS and EOS to preseason temperature displays that an increase of 1 °C in the regionally averaged preseason temperature would advance the average SOS by 1.23 days and delay the average EOS by 0.72 days, respectively. This study improved our understanding of the recent variability of forest phenology in mountain ecotones and explored the correlation between forest phenology and climate variables in the context of the ongoing climate warming.
Funder
National Natural Science Foundation of China
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献