Abstract
The expression of neuropeptide Y (NPY) in the arcuate nucleus (ARC) and corticotropin-releasing factor (CRF) in the paraventricular nucleus (PVN) were increased when low body weight–selected (LWS) line chicks, which are predisposed to anorexia, were subjected to a combination of nutritional and thermal stressors at hatch. We hypothesized that such changes resulted from epigenetic modifications. We determined global DNA methylation, DNA methyltransferase (DNMT) activity, and methylation near the promoter regions of NPY and CRF, in the hypothalamus of LWS chicks on day 5 post-hatch. Stress exposure at hatch induced global hypermethylation and increased DNMT activity in the ARC but not PVN. In the PVN of stressed LWS chicks, there was decreased methylation of a CpG site located at the core binding domain of methyl cytosine binding domain protein 2 (MBD2), near the CRF gene promoter. We then demonstrated that this was associated with disrupted binding of MBD2. There was also reduced utilization of yolk reserves and lean and fat masses in chicks that were stress-exposed. These findings provide novel insights on molecular mechanisms through which stressful events induce or intensify anorexia in predisposed individuals and a novel molecular target for further studies.
Funder
U.S. Department of Agriculture
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献