The Carbon Sequestration Potential of Degraded Agricultural Land in the Amhara Region of Ethiopia

Author:

Belay BeyeneORCID,Pötzelsberger Elisabeth,Hasenauer Hubert

Abstract

Forests are a key player within the global carbon cycle and reforestation is an important climate change mitigation mechanism. In this study, we identify potentially suitable areas for reforestation to assess the carbon sequestration potential in the highly deforested and degraded Amhara region of Ethiopia. We apply biogeochemical mechanistic ecosystem modelling to predict the amount of carbon that can be potentially sequestered within different time horizons. Since human intervention plays a key role within the Amhara region, three different forest management scenarios and five different rotation periods following reforestation are tested: (i) unthinned; (ii) removal of 5% of the stem carbon every 20 years (thinning 1); and (iii) removal of 10% stem carbon every 20 years (thinning 2), as well as a rotation period of 10, 30, 50, 100, and 150 years. Sustainable management of reforested land is addressed by implementing the so called ‘Normal-forest’ system (equal representation of every age class). This ensures the long term sequestration effect of reforested areas. The study shows that 3.4 Mha (Mha = Million hectare) of land, including bare land (0.7 Mha), grass land (1.2 Mha), and shrub land (1.5 Mha) can be considered as ecologically potentially suitable for reforestation. Assuming a 100 year rotation period in a ‘Normal-forest’ system, this shows that a total net carbon sequestration potential of 177 Tg C (10.8 Tg C in the soil and 165.9 Tg C aboveground; Teragram = 1012 g) is possible, if all 3.4 Mha are replanted. The highest total net carbon sequestration (soil and aboveground) was evident for the Highland-wet agro-ecological zone, whereas the lowest values are typically in the Midland-dry zone. The highest net aboveground carbon sequestration was predicted for reforestations on current grass land and shrub land versus bare land, whereas the highest net soil carbon sequestration was predicted on current bare land, followed by grass land and shrub land.

Funder

Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3