Multimodal Monitoring of Corrosion in Reinforced Concrete for Effective Lifecycle Management of Built Facilities

Author:

Majhi Subhra,Asilo Leonarf Kevin,Mukherjee Abhijit,George Nithin V.,Uy Brian

Abstract

Monitoring the corrosion of steel rebars is paramount to ensuring the safety and serviceability of reinforced concrete (RC) structures. Conventional electro-chemical techniques can provide an overall estimate of the extent of corrosion. However, a detailed account of the extent of corrosion would help in understanding the residual strength of corroding RC structures. A passive wave-based technique such as acoustic emissions can identify the location of corrosion but always requires the presence of transducers on the structure. In active wave-based techniques, the structure is excited through a pulse excitation and their subsequent response to this excitation is measured. Thus, for active techniques, the transducers need not always be present in the structure. In guided wave ultrasonics, the excitation pulse is imparted through a waveguide to determine the state of corrosion. This technique relies on parameters such as time of flight or attenuation of the incident signal to predict the state of corrosion. These parameters can be susceptible to uncertainties in the transducer of ultrasonic coupling. In the present study, concrete specimens with embedded steel bars have been subjected to accelerated corrosion. They have been monitored with a combination of active and passive techniques. The received signals are analyzed through a modified S-Transform-based time-frequency approach to obtain a range of modes that propagate through the specimen. The changes in the modal composition of the guided wave signals due to corrosion are parameterized and correlated to various stages of corrosion. A holistic understanding of the stages of corrosion is developed by the inclusion of acoustic emission hits to guided wave parameters. Based on the Guided Wave Ultrasonics and acoustic emission parameters, corrosion has been classified into Initiation, Intermediate, and Advanced. Subsequently, destructive tests have been performed to measure the residual strength of the corroded bars. Thus, this paper presents a novel proof of concept study for monitoring corrosion with Guided Wave Ultrasonics and acoustic emissions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference63 articles.

1. A review on different treatment methods for enhancing the properties of recycled aggregates for sustainable construction materials

2. 2015 National State of the Assets Report https://alga.com.au/national-state-of-the-assets-report-2015/

3. Methods for characterising the steel–concrete interface to enhance understanding of reinforcement corrosion: a critical review by RILEM TC 262-SCI

4. Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review

5. Modeling the Time-to Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures;Liu;Ph.D. Thesis,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3