Study on Stope Stability in Continuous Mining of Long-Dip, Thin Orebody by Room–Pillar Method

Author:

Guo YanhuiORCID,Miao Yichen

Abstract

In order to analyze the stability of the stope under continuous mining with the room–pillar method for a kind of orebody with a long inclination, but not deep mining, this paper takes the room–pillar method for the continuous mining of a long-inclination orebody in the Mengnuo Lead–Zinc Mine, Yunnan Province as the research background. On the basis of the analysis of the stope mechanical model of a long, inclined, thin orebody with room-and-pillar mining, based on numerical simulation, the nature of the change in stress, displacement and the plasticity zone of the roof and pillar during continuous mining along the inclination are systematically analyzed. The results show that as the mining depth increases, the roof subsidence of the stope in the middle of the current operation increases. With the continuous mining of the lower middle section, the roof displacement of the stope will continue to increase with the subsequent mining of the middle section until the end of all stope operations, and the roof displacement of the stope has an obvious cumulative effect. The stress on the roofs and pillars increases with the gradual downward movement of the mining in each level, and the distribution of the plastic zone also expands. It shows that the stope structural parameters that are set according to shallow mining cannot fully meet the requirements of stability and safety in mining a deeper orebody. Therefore, for the mining of a non-deep orebody with a greater tendency to extend, the structural parameters of a shallow stope should not simply be used in the mining of a deeper orebody, but the pillar size should be appropriately increased or the spacing between the room and pillar should be reduced to ensure the stability and safety of the continuous stope.

Funder

Key projects of analysis and testing fund of Kunming University of Science and Technology, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3