Abstract
Knowledge of the interactions among different microorganisms is important to understand how ecological function transformation is affected by elevated CO2 levels in CO2-enhanced oil recovery (CO2-EOR) sites. Molecular ecological networks were established to reveal the interactions among different microbes of the soil bacterial community with the high-throughput sequencing data of 16S rRNA genes. The results showed that these networks are a powerful tool to identify and explain the interactions and keystone species in the communities under elevated CO2 pressure. The structures of networks under different CO2 leakage concentrations were different as a result of the networks’ topology properties, such as node numbers, topological roles of individual nodes, and network hubs. These indicators imply that the interactions among different groups were obviously changed. Moreover, changes in the network structure were significantly correlated with soil pH value, which might suggest that the large CO2 leakage affected the soil ecosystem functions by changing the network interactions. Additionally, the key microbial populations such as Bacteroidetes and Proteobacteria were distinguished based on network topology to reveal community structure and ecosystem functioning. The work developed in this study could help microbiologists to address some research questions that could not be approached previously, and, hence, might represent a new area of research for microbial ecology.
Funder
The Grand Funds of Key Laboratory of Coal-based CO2 Capture and Geological Storage (CUMT), Jiangsu Province
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献