In Vitro Multiplication and Cryopreservation of Penthorum chinense Shoot Tips

Author:

Zilani Rabbi A. K. M.,Lee Hyoeun,Popova ElenaORCID,Kim Haenghoon

Abstract

This study provides alternative approaches toward ex situ conservation by means of in vitro seed germination and the multiplication of Penthorum chinense Pursh using nodal explants. An overlay of a liquid medium on top of a gelled medium significantly increased the growth of shoots and roots, while the presence of activated charcoal or growth regulators (benzyl adenine and α-naphthaleneacetic acid) decreased the growth. Shoot tips of in vitro plantlets were cryopreserved using a droplet-vitrification method. The standard procedure included preculture with 10% sucrose for 31 h and with 17.5% sucrose for 17 h, osmoprotection with loading solution C4-35% (17.5% glycerol + 17.5% sucrose, w/v) for 20 min, cryoprotection with alternative plant vitrification solution (PVS) A3-70% (29.2% glycerol + 11.7% DMSO + 11.7% EG + 17.4% sucrose, w/v) at 0 °C for 30 min, cooling the samples in liquid nitrogen using aluminum foil strips and rewarming by plunging into pre-heated (40 °C) unloading solution (35% sucrose) for 40 min. A three-step regrowth procedure starting with ammonium-free medium followed by ammonium-containing medium with and without growth regulators was essential for the regeneration of cryopreserved shoot tips. The species was found to be very sensitive to the chemical cytotoxicity of permeating cryoprotectants during cryoprotection and to ammonium-induced oxidant stress during initial regrowth steps. Improvement of donor plant vigor by using apical sections and liquid overlay on top of the solid medium for propagation, improved shoot tip tolerance to osmotic stress and increased post-cryopreservation regeneration up to 64% were observed following PVS B5-85% (42.5% glycerol + 42.5% sucrose) treatment for 60 min. The systematic approach used in this study enables fast optimization of the in vitro growth and cryopreservation procedure for a new stress-sensitive wild plant species.

Funder

Research Promotion Program of Sunchon National University

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3