Photooxidation of A2E by Blue Light Regulates Heme Oxygenase 1 Expression via NF-κB and Lysine Methyltransferase 2A in ARPE-19 Cells

Author:

Shin Chae Young,Jeong Kwang WonORCID

Abstract

Background: N-retinylidene-N-retinylethanolamine (A2E) is a component of drusen that accumulates in retinal cells and induces oxidative stress through photooxidation, such as blue light (BL). We found that the heme oxygenase 1 (HMOX1) gene responds sensitively to photooxidation by the BL of A2E in retinal pigment epithelial (RPE) cells, and we sought to identify the transcription factors and coactivators involved in the upregulation of HMOX1 by A2E and BL. Methods: A2E-laden human RPE cells (ARPE-19) were exposed to BL (430 nm). RNA sequencing was performed to identify genes responsive to BL exposure. Chromatin immunoprecipitation and RT-qPCR were performed to determine the regulation of HMOX1 transcription. Clinical transcriptome data were used to evaluate HMOX1 expression in patients with age-related macular degeneration (AMD). Results: In ARPE-19 cells, the expression of HMOX1, one of the NF-κB target genes, was significantly increased by A2E and BL. The binding of RELA and RNA polymerase II to the promoter region of HMOX1 was significantly increased by A2E and BL. Lysine methyltransferase 2A (MLL1) plays an important role in H3K4me3 methylation, NF-κB recruitment, chromatin remodeling at the HMOX1 promoter, and, subsequently, HMOX1 expression. The retinal tissues of patients with late-stage AMD showed significantly increased expression of HMOX1 compared to normal retinal tissues. In addition, the expression levels of MLL1 and HMOX1 in retinal tissues were correlated. Conclusions: Taken together, our results suggest that BL induces HMOX1 expression by activating NF-κB and MLL1 in RPE cells.

Funder

National Research Foundation of Korea

Gachon University

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3