Abstract
Phycobilisomes in cyanobacteria and red algae are large protein complexes that absorb light and transfer energy for use in photosynthesis. The light energy absorbed by chromophores binding to phycobiliproteins in the peripheral rods can be funneled to the core through chromophores at very high efficiency. The molecular mechanism of excitation energy transfer within a phycobilisome is an example of a higher and unique function in a living organism. However, the mechanism underlying the high efficiency remains unclear. Thus, this study was carried out as a step to resolve this mechanism theoretically. The three-dimensional structure of phycobilisomes containing the linker proteins of the red alga Porphyridium purpureum was determined by cryoelectron microscopy at 2.82 Å resolution in 2020. Using these data, the absorption wavelength of each β82 chromophore in the phycocyanin hexamer located next to the core was calculated using quantum chemical treatment, considering the electric effect from its surrounding phycocyanin proteins and two linker proteins. In addition to unaffected chromophores, chromophores that were redshifted and blueshifted under the electrical influence of the two linker proteins were found. Namely, the chromophore serving as the energy sink in the rod was determined.
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献