Clampless In-Situ Immobilized Branching (CLIMB) to Reconstruct the Internal Iliac Artery

Author:

Shirasu Takuro,Akai Atsushi,Motoki Manabu,Kato Masaaki

Abstract

Background: Surgical reconstruction of the internal iliac artery (IIA) or its branches is sometimes demanding because of difficulty in distal clamping and suturing in the narrow pelvic space. Here we present a hybrid technique of ClampLess In-situ imMobilized Branching (CLIMB) to reconstruct IIA. Methods: in the CLIMB technique, an 8 mm artificial graft is sutured onto the surface of the common iliac artery (CIA) without clamping. Following puncture of the CIA wall, stent grafts are bridged from IIA to the graft. Finally, the graft is sutured to the ipsilateral external iliac artery (EIA). Concomitant endovascular aneurysm repair or IIA branch embolization can also be performed. We applied this technique to the patients unsuited for other IIA reconstruction. Results: eleven patients underwent the current technique. All but one patient underwent contralateral IIA interruption. Seven patients had a history of aorto-iliac repair before the index surgery. Iliac extender, internal iliac component, Viabahn VBX or Fluency covered stent were used for bridging the graft. Simultaneous IIA branch embolization was performed in 2 patients. Distal landing zones were IIA in 7 grafts, superior gluteal artery in 4 grafts and inferior gluteal artery (IGA) in 1 graft. Technical success was achieved in all cases. No patient complained of buttock claudication or other ischemic symptoms on the treatment side. During a mean follow-up period of 38 months, 11 out of 12 grafts were patent without any related endoleak. One IGA graft occluded at 56 months after surgery. Conclusions: the CLIMB technique is a viable alternative to preserve IIA with an acceptable mid-term durability.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3