In Vitro Evaluation of Zinc Oxide Tetrapods as a New Material Component for Glaucoma Implants

Author:

Sonntag Svenja Rebecca,Gniesmer StefanieORCID,Gapeeva AnnaORCID,Offermann Klaus Jakob,Adelung RainerORCID,Mishra Yogendra KumarORCID,Cojocaru Ala,Kaps Sören,Grisanti Swaantje,Grisanti Salvatore,Tura Aysegül

Abstract

In our previous study we were able to show that zinc oxide (ZnO) tetrapods inhibit wound healing processes. Therefore, the aim of this study was to test the antiproliferative effect of two types of porous polydimethylsiloxane (PDMS)/ tetrapodal zinc oxide (ZnO-T) materials, as well as their usability for glaucoma implants. To find the best implant material, two different porous PDMS/ZnO-T materials were examined. One consisted of 3D interconnected PDMS coarse-pored foams with protruding ZnO-T particles; the other consisted of fine-pored 3D interconnected ZnO-T networks homogeneously coated by a thin PDMS film in the nanometer range. Fibroblast cell viability was investigated for both materials via MTT dye, and some implant material samples were further processed for electron microscopy. Both PDMS/ZnO-T materials showed reduced cell viability in the MTT staining. Furthermore, the electron microscopy revealed barely any fibroblasts growing on the implant materials. At the surface of the fine-pored implant material, however, fibroblasts could not be observed in the etched control samples without ZnO-T. It was found that post-processing of the material to the final stent diameter was highly challenging and that the fabrication method, therefore, had to be adapted. In conclusion, we were able to demonstrate the antiproliferative potential of the two different PDMS/ZnO-T materials. Furthermore, smaller pore size (in the range of tens of micrometers) in the implant material seems to be preferable.

Funder

Federal Ministry of Education and Research in Germany

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3