Landscape Analysis of Runoff and Sedimentation Based on Land Use/Cover Change in Two Typical Watersheds on the Loess Plateau, China

Author:

Liu Xiaojun,Zhang Yi

Abstract

Understanding sedimentation and runoff variations caused by land use change have emerged as important research areas, due to the ecological functions of landscape patterns. The aims of this study were to determine the relationship between landscape metrics (LMs), runoff, and sedimentation and explore the crucial LMs in the watersheds on the Loess Plateau. From 1985 to 2010, grassland was the dominant landscape in the Tuweihe (TU) and Gushanchuan (GU) watersheds. Unused land and cropland experienced the greatest transformations. The landscape in the study area tended to become regular, connected, and aggregated, represented by increasing of the Shannon’s diversity index and the largest patch index, and decreasing landscape division over time. The landscape stability of the TU watershed was higher than that of the GU watershed. Annual runoff and sedimentation gradually decreased and a significant relationship was found between water and soil loss. Due to larger cropland area and lower landscape stability in the GU watershed, the sedimentation of the two watersheds were similar, even though the runoff in the TU watershed was greater. There were stronger effects of LMs on runoff than that on sedimentation yield. The Shannon’s evenness and the patch cohesion index was identified as the key factors of influencing water and soil loss, which had the greatest effects on runoff and sedimentation. Results indicated that regional water and soil loss is sensitive to landscape regulation, which could provide a scientific understanding for the prevention and treatment of soil erosion at landscape level.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3