Genome-Wide Identification of LeBAHDs in Lithospermum erythrorhizon and In Vivo Transgenic Studies Confirm the Critical Roles of LeBAHD1/LeSAT1 in the Conversion of Shikonin to Acetylshikonin

Author:

Wang Xuan,He Zhuoyu,Yang Huan,He Cong,Wang Changyi,Fazal Aliya,Lai Xiaohui,Yang Liangjie,Wen ZhonglingORCID,Yang Minkai,Ma Shenglin,Jie Wencai,Cai Jinfeng,Yin Tongming,Liu BaoORCID,Yang YonghuaORCID,Qi JinliangORCID

Abstract

The BAHD acyltransferase family is a unique class of plant proteins that acylates plant metabolites and participates in plant secondary metabolic processes. However, the BAHD members in Lithospermum erythrorhizon remain unknown and uncharacterized. Although the heterologously expressed L. erythrorhizon BAHD family member LeSAT1 in Escherichia coli has been shown to catalyze the conversion of shikonin to acetylshikonin in vitro, its in vivo role remains unknown. In this study, the characterization, evolution, expression patterns, and gene function of LeBAHDs in L. erythrorhizon were explored by bioinformatics and transgenic analysis. We totally identified 73 LeBAHDs in the reference genome of L. erythrorhizon. All LeBAHDs were phylogenetically classified into five clades likely to perform different functions, and were mainly expanded by dispersed and WGD/segmental duplication. The in vivo functional investigation of the key member LeBAHD1/LeSAT1 revealed that overexpression of LeBAHD1 in hairy roots significantly increased the content of acetylshikonin as well as the conversion rate of shikonin to acetylshikonin, whereas the CRISPR/Cas9-based knockout of LeBAHD1 in hairy roots displayed the opposite trend. Our results not only confirm the in vivo function of LeBAHD1/LeSAT1 in the biosynthesis of acetylshikonin, but also provide new insights for the biosynthetic pathway of shikonin and its derivatives.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Bureau of Science and Technology

Open Project Program from the MOE Key Laboratory of Molecular Epigenetics of China

Program for Changjiang Scholars and Innovative Research Team in University from the Ministry of Education of China

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3