Alpinumisoflavone Exhibits the Therapeutic Effect on Prostate Cancer Cells by Repressing AR and Co-Targeting FASN- and HMGCR-Mediated Lipid and Cholesterol Biosynthesis

Author:

Basavaraj Praveenkumar,Ruangsai Phakkhathorn,Hsieh Po-Fan,Jiang Wen-Ping,Bau Da-Tian,Huang Guan-JhongORCID,Huang Wen-ChinORCID

Abstract

Prostate cancer (PCa) is the most common cancer in men, and this has been mainly noticed in Western and Asian countries. The aggregations of PCa and castration-resistant PCa (CRPC) progression are the crucial causes in the mortality of patients without the effective treatment. To seek new remedies for the lethal PCa diseases is currently an urgent need. In this study, we endeavored to investigate the therapeutic efficacy of alpinumisoflavone (AIF), a natural product, in PCa. LNCaP (androgen- sensitive) and C4-2 (CRPC) PCa cells were used. An MTT-based method, soft agar colony forming assay, biological progression approaches were applied to determine cell viability, migration, and invasion. A fatty acid quantification kit, a cholesterol detection kit and oil red O staining were conducted to analyze the intracellular levels of lipids and cholesterols. Apoptosis assays were also performed. AIF reduced cell viability, migration, and invasion in PCa cells. The expression of androgen receptor (AR), fatty acid synthase (FASN), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was substantially inhibited by AIF treatment in PCa cells. Furthermore, by inhibiting FASN and HMGCR expression, AIF decreased the amounts of intracellular fatty acids, cholesterols, and lipid droplets in PCa cells. Significantly, through coordinated targeting FASN- and HMGCR-regulated biosynthesis and the AR axis, AIF activated the caspase-associated apoptosis in PCa cells. These results collectively demonstrated for the first time the potential of AIF as a novel and attractive remedy and provided an alternative opportunity to cure PCa malignancy.

Funder

National Science and Technology Council

National Health Research Institutes

China Medical University

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3