Towards Real-Time Analysis of Gas-Liquid Pipe Flow: A Wire-Mesh Sensor for Industrial Applications

Author:

Wiedemann Philipp1ORCID,de Assis Dias Felipe1ORCID,Trepte Manuel2,Schleicher Eckhard1ORCID,Hampel Uwe13ORCID

Affiliation:

1. Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany

2. Teletronic Rossendorf GmbH, Bautzener Landstraße 45, 01454 Radeberg, Germany

3. Chair of Imaging Techniques in Energy and Process Engineering, Technische Universität Dresden, 01062 Dresden, Germany

Abstract

Real-time monitoring of gas-liquid pipe flow is highly demanded in industrial processes in the chemical and power engineering sectors. Therefore, the present contribution describes the novel design of a robust wire-mesh sensor with an integrated data processing unit. The developed device features a sensor body for industrial conditions of up to 400 °C and 135 bar as well as real-time processing of measured data, including phase fraction calculation, temperature compensation and flow pattern identification. Furthermore, user interfaces are included via a display and 4…20 mA connectivity for the integration into industrial process control systems. In the second part of the contribution, we describe the experimental verification of the main functionalities of the developed system. Firstly, the calculation of cross-sectionally averaged phase fractions along with temperature compensation was tested. Considering temperature drifts of up to 55 K, an average deviation of 3.9% across the full range of the phase fraction was found by comparison against image references from camera recordings. Secondly, the automatic flow pattern identification was tested in an air–water two-phase flow loop. The results reveal reasonable agreement with well-established flow pattern maps for both horizontal and vertical pipe orientations. The present results indicate that all prerequisites for an application in industrial environments in the near future are fulfilled.

Funder

German Federal Ministry for Economic Affairs and Climate Action

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3