Comparisons of Precipitation Isotopic Effects on Daily, Monthly and Annual Time Scales—A Case Study in the Subtropical Monsoon Region of Eastern China

Author:

Xiao Zhuoyong1,Zhang Xinping12,Xiao Xiong12,Chang Xin1,He Xinguang12ORCID,Zhang Cicheng1

Affiliation:

1. College of Geographical Sciences, Hunan Normal University, Changsha 410081, China

2. Key Laboratory of Geospatial Big Data Mining and Applications in Hunan Province, Hunan Normal University, Changsha 410081, China

Abstract

The study on precipitation isotope variation can potentially improve the understanding of weather processes, regional water cycle and paleoclimate reconstruction in the subtropical monsoon region. Based on the measured stable isotope composition in precipitation (δ18Op) and daily precipitation from January 2010 to December 2021 in Changsha of the subtropical monsoon region of eastern China, the δ18Op variations, amount effect and local meteoric water line (LMWL) were analyzed and compared on daily, monthly and annual time scales, as well as under different precipitation intensities. The results showed that, on the daily time scale, δ18Op was significantly and negatively correlated with precipitation in the study area. Influenced by subcloud evaporation, small precipitation events (≤5 mm/d) could change the rainout level of precipitation isotopes. There were significant differences in the slope and intercept of the LMWL on different time scales, in different seasons and under different precipitation intensities. On the daily and monthly time scales, the slope and intercept of the LMWL in the cold half of the year were significantly smaller and larger than those in the warm half of the year, respectively, and the slope and intercept of the LMWL increased significantly with precipitation intensity, and then remained largely stable. On the annual time scale, the slope and intercept of the LMWL in the cold half of the year were smaller than those in the warm half of the year. The possible reasons for the differences in the LMWL on different time scales are the combined effects of seasonal differences in precipitation intensity and water vapor sources.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3