Expression Quantitative Trait Locus of Wood Formation-Related Genes in Salix suchowensis

Author:

Chen Li1,Liu Liyan1,Yang Guo1ORCID,Li Xiaoping1,Dai Xiaogang1,Xue Liangjiao1,Yin Tongming1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Shrub willows are widely planted for landscaping, soil remediation, and biomass production, due to their rapid growth rates. Identification of regulatory genes in wood formation would provide clues for genetic engineering of willows for improved growth traits on marginal lands. Here, we conducted an expression quantitative trait locus (eQTL) analysis, using a full sibling F1 population of Salix suchowensis, to explore the genetic mechanisms underlying wood formation. Based on variants identified from simplified genome sequencing and gene expression data from RNA sequencing, 16,487 eQTL blocks controlling 5505 genes were identified, including 2148 cis-eQTLs and 16,480 trans-eQTLs. eQTL hotspots were identified, based on eQTL frequency in genomic windows, revealing one hotspot controlling genes involved in wood formation regulation. Regulatory networks were further constructed, resulting in the identification of key regulatory genes, including three transcription factors (JAZ1, HAT22, MYB36) and CLV1, BAM1, CYCB2;4, CDKB2;1, associated with the proliferation and differentiation activity of cambium cells. The enrichment of genes in plant hormone pathways indicates their critical roles in the regulation of wood formation. Our analyses provide a significant groundwork for a comprehensive understanding of the regulatory network of wood formation in S. suchowensis.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Jiangsu Province, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3