Phosphoramidate Azole Oligonucleotides for Single Nucleotide Polymorphism Detection by PCR

Author:

Chubarov Alexey S.1ORCID,Baranovskaya Elizaveta E.1,Oscorbin Igor P.1ORCID,Yushin Ivan I.1,Filipenko Maxim L.1,Pyshnyi Dmitrii V.1ORCID,Vasilyeva Svetlana V.1,Lomzov Alexander A.1ORCID

Affiliation:

1. Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia

Abstract

Detection of the Kirsten rat sarcoma gene (KRAS) mutational status is an important factor for the treatment of various malignancies. The most common KRAS-activating mutations are caused by single-nucleotide mutations, which are usually determined by using PCR, using allele-specific DNA primers. Oligonucleotide primers with uncharged or partially charged internucleotide phosphate modification have proved their ability to increase the sensitivity and specificity of various single nucleotide mutation detection. To enhance the specificity of single nucleotide mutation detection, the novel oligonucleotides with four types of uncharged and partially charged internucleotide phosphates modification, phosphoramide benzoazole (PABA) oligonucleotides (PABAO), was used to prove the concept on the KRAS mutation model. The molecular effects of different types of site-specific PABA modification in a primer or a template on a synthesis of full-length elongation product and PCR efficiency were evaluated. The allele-specific PCR (AS-PCR) on plasmid templates showed a significant increase in analysis specificity without changes in Cq values compared with unmodified primer. PABA modification is a universal mismatch-like disturbance, which can be used for single nucleotide polymorphism discrimination for various applications. The molecular insights of the PABA site-specific modification in a primer and a template affect PCR, structural features of four types of PABAO in connection with AS-PCR results, and improvements of AS-PCR specificity support the further design of novel PCR platforms for various biological targets testing.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3