Development of a Gene-Based Marker Set for Orange-Colored Watermelon Flesh with a High β-Carotene Content

Author:

Jin Bingkui1,Jang Gaeun1,Park Girim1,Shahwar Durre1,Shin Jagyeong1,Kwon Gibeom2,Kim Yongjae2,Kim Hoytaek3,Lee Oakjin4,Park Younghoon15ORCID

Affiliation:

1. Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea

2. Partner Seeds Co., Ltd., Gimje 54324, Republic of Korea

3. Department of Horticulture, Sunchon National University, Sunchon 57922, Republic of Korea

4. National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea

5. Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea

Abstract

The fruit flesh of watermelons differs depending on the distinct carotenoid composition. Orange-colored flesh relates to the accumulation of β-carotene, which is beneficial to human health. Canary-yellow-fleshed OTO-DAH and orange-β-fleshed (orange-fleshed with high β-carotene) NB-DAH near-isogenic lines (NILs) were used to determine the genetic mechanism attributed to orange watermelon flesh. For genetic mapping, an F2 population was developed by crossing the two NILs. The segregation ratio of flesh color in the F2 population indicated that the orange-β flesh of the NB-DAH NIL was controlled by a single incompletely dominant gene. Through a comparative analysis of the whole-genome sequences of the parent lines and NILs, a major introgression region unique to the NB-DAH NIL was detected on Chr. 1; this was considered a candidate region for harboring genes that distinguish orange from canary-yellow and red flesh. Among the 13 genes involved in the carotenoid metabolic pathway in watermelons, only ClPSY1 (ClCG01G008470), which encodes phytoene synthase 1, was located within the introgression region. The genotyping of F2 plants using a cleaved amplified polymorphic sequence marker developed from a non-synonymous SNP in ClPSY1 revealed its relationship with orange-β flesh. The insights gained in this study can be applied to marker-assisted breeding for this desirable trait.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference25 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3