Integrated Amino Acids and Transcriptome Analysis Reveals Arginine Transporter SLC7A2 Is a Novel Regulator of Myogenic Differentiation

Author:

Huang Tiane1ORCID,Zhou Jing1,Wang Benhui1,Wang Xiang1,Xiao Wanli1,Yang Mengqi1,Liu Yan1,Wang Qiquan1,Xiang Yang1ORCID,Lan Xinqiang1

Affiliation:

1. Metabolic Control and Aging—Jiangxi Key Laboratory of Human Aging, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China

Abstract

Skeletal muscle differentiation is a precisely coordinated process. While many of the molecular details of myogenesis have been investigated extensively, the dynamic changes and functions of amino acids and related transporters remain unknown. In this study, we conducted a comprehensive analysis of amino acid levels during different time points of C2C12 myoblast differentiation using high-performance liquid chromatography (HPLC). Our findings revealed that the levels of most amino acids exhibited an initial increase at the onset of differentiation, reaching their peak typically on the fourth or sixth day, followed by a decline on the eighth day. Particularly, arginine and branched-chain amino acids showed a prominent increase during this period. Furthermore, we used RNA-seq analysis to show that the gene encoding the arginine transporter, Slc7a2, is significantly upregulated during differentiation. Knockdown of Slc7a2 gene expression resulted in a significant decrease in myoblast proliferation and led to a reduction in the expression levels of crucial myogenic regulatory factors, hindering the process of myoblast differentiation, fusion, and subsequent myotube formation. Lastly, we assessed the expression level of Slc7a2 during aging in humans and mice and found an upregulation of Slc7a2 expression during the aging process. These findings collectively suggest that the arginine transporter SLC7A2 plays a critical role in facilitating skeletal muscle differentiation and may hold potential as a therapeutic target for sarcopenia.

Funder

Postgraduate Innovation of Jiangxi Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3