Affiliation:
1. State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
2. Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
Abstract
To improve the chemical regulation on the activity of cyclic dinucleotides (CDNs), we here designed a reduction-responsive dithioethanol (DTE)-based dCDN prodrug 9 (DTE-dCDN). Prodrug 9 improved the cell permeability with the intracellular levels peaking in 2 h in THP-1 cells. Under the reductive substance such as GSH or DTT, prodrug 9 could be quickly decomposed in 30 min to release the parent dCDN. In THP1-Lucia cells, prodrug 9 also retained a high bioactivity with the EC50 of 0.96 μM, which was 51-, 43-, and 3-fold more than the 2′,3′-cGAMP (EC50 = 48.6 μM), the parent compound 3′,3′-c-di-dAMP (EC50 = 41.3 μM), and ADU-S100 (EC50 = 2.9 μM). The high bioactivity of prodrug 9 was validated to be highly correlated with the activation of the STING signaling pathway. Furthermore, prodrug 9 could also improve the transcriptional expression levels of IFN-β, CXCL10, IL-6, and TNF-α in THP-1 cells. These results will be helpful to the development of chemically controllable CDN prodrugs with a high cellular permeability and potency.
Funder
Science and Technology Program of Tianjin
Frontiers Science Center for New Organic Matter, Nankai University
the Haihe Laboratory of Sustainable Chemical Transformations
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献