Nickel Challenge In Vitro Affects CD38 and HLA-DR Expression in T Cell Subpopulations from the Blood of Patients with Nickel Allergy

Author:

Artuc Metin1,Zuberbier Torsten23ORCID,Peiser Matthias4

Affiliation:

1. Department of Dermatology and Allergy, Allergy Center Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany

2. Berlin Institute of Allergology, Charité-Universitätsmedizin, Campus Benjamin Franklin, 12203 Berlin, Germany

3. Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany

4. Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany

Abstract

Nickel allergy is a major health problem and shows clinical manifestation of contact eczema. The response of specific lymphocyte subpopulations in sensitized patients after new challenge to nickel has until now not been studied in detail. To evaluate if nickel-based elicitation reaction could be objectively identified by multi-parametric flow cytometry, immunophenotyping of specific T cells was applied. White blood cells from 7 patients (4 positive in patch test, 3 negative) were challenged by nickel and in vitro short-term culture. Standardized antibody-dye combinations, specific for T helper(h)1, Th17 and cytotoxic T cell activation, were selected according to the recommendations of Stanford Human Immune Monitoring Center. In cytotoxic CD8+CCR7+CD45RA+ T cells from patients suffering from nickel allergy, CD38 and HLA-DR were elevated comparing to healthy donors. After challenge to nickel in vitro both markers decreased in CD8+CCR7+CD45RA+ T cells but found up-regulated in CD4+CCR7+CD45RA+CCR6−CXCR3+Th1 cells. Intracellular expression of T-bet and RORγt further indicated Th1 and Th17 cells. Finally, CD4+CD25+CCR4− T cells increased after challenge with nickel in PBMCs of patients with nickel allergy. Flow cytometry based quantification of T cell markers might be used as a specific and reliable method to detect chemical induced skin sensitization and confirm diagnostic patch testing in the clinics.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3