Prednisolone Targets Claudins in Mouse Brain Blood Vessels

Author:

Markov Alexander G.12,Bikmurzina Anastasia E.1,Fedorova Arina A.1ORCID,Vinogradova Ekaterina P.3,Kruglova Natalia M.1,Krivoi Igor I.1ORCID,Amasheh Salah4ORCID

Affiliation:

1. Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia

2. Interoception Laboratory, Pavlov Institute of Physiology RAS, 199034 St. Petersburg, Russia

3. Department of Higher Nervous Activity and Psychophysiology, St. Petersburg State University, 199034 St. Petersburg, Russia

4. Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany

Abstract

Endothelial cells in brain capillaries are crucial for the function of the blood–brain barrier (BBB), and members of the tight junction protein family of claudins are regarded to be primarily responsible for barrier properties. Thus, the analysis of bioactive substances that can affect the BBB’s permeability is of great importance and may be useful for the development of new therapeutic strategies for brain pathologies. In our study, we tested the hypothesis that the application of the glucocorticoid prednisolone affects the murine blood–brain barrier in vivo. Isolated brain tissue of control and prednisolone-injected mice was examined by employing immunoblotting and confocal laser scanning immunofluorescence microscopy, and the physiological and behavioral effects were analyzed. The control tissue samples revealed the expression of barrier-forming tight junction proteins claudin-1, -3, and -5 and of the paracellular cation and water-channel-forming protein claudin-2. Prednisolone administration for 7 days at doses of 70 mg/kg caused physiological and behavioral effects and downregulated claudin-1 and -3 and the channel-forming claudin-2 without altering their localization in cerebral blood vessels. Changes in the expression of these claudins might have effects on the ionic and acid–base balance in brain tissue, suggesting the relevance of our findings for therapeutic options in disorders such as cerebral edema and psychiatric failure.

Funder

German Research Foundation

Freie Universität Berlin

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3