Effects of Argon Gas Plasma Treatment on Biocompatibility of Nanostructured Titanium

Author:

Hayashi Rina1,Takao Seiji1,Komasa Satoshi1ORCID,Sekino Tohru2ORCID,Kusumoto Tetsuji3,Maekawa Kenji1ORCID

Affiliation:

1. Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata 573-1121, Osaka, Japan

2. Department of Advanced Hard Materials, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan

3. Department of Oral Health Engineering, Faculty of Health Sciences, Osaka Dental University, 1-4-4, Makino-honmachi, Hirakata 573-1121, Osaka, Japan

Abstract

In this study, we applied argon plasma treatment to titanium surfaces with nanostructures deposited by concentrated alkali treatment and investigated the effects on the surface of the material and the tissue surrounding an implant site. The results showed that the treatment with argon plasma removed carbon contaminants and increased the surface energy of the material while the nanoscale network structure deposited on the titanium surface remained in place. Reactive oxygen species reduced the oxidative stress of bone marrow cells on the treated titanium surface, creating a favorable environment for cell proliferation. Good results were observed in vitro evaluations using rat bone marrow cells. The group treated with argon plasma exhibited the highest apatite formation in experiments using simulated body fluids. The results of in vivo evaluation using rat femurs revealed that the treatment improved the amount of new bone formation around an implant. Thus, the results demonstrate that argon plasma treatment enhances the ability of nanostructured titanium surfaces to induce hard tissue differentiation and supports new bone formation around an implant site.

Funder

JPS KAKENHI

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3