Longitudinal Transcription Profiling of Bladder Cancers Dictate the Response to BCG Treatment and Disease Progression

Author:

Lee Seo-Young12,Lee Yun-Hee3ORCID,Kim Tae-Min124,Ha U-Syn23

Affiliation:

1. Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea

2. Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea

3. Department of Urology, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea

4. Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 03083, Republic of Korea

Abstract

Although the intravesical instillation of Bacillus Calmette-Guerin (BCG) is widely used as adjuvant treatment for nonmuscle-invasive bladder cancers, the clinical benefit is variable across patients, and the molecular mechanisms underlying the sensitivity to BCG administration and disease progression are poorly understood. To establish the molecular signatures that predict the responsiveness and disease progression of bladder cancers treated with BCG, we performed transcriptome sequencing (RNA-seq) for 13 treatment-naïve and 22 post-treatment specimens obtained from 14 bladder cancer patients. To overcome disease heterogeneity, we used non-negative matrix factorization to identify the latent molecular features associated with drug responsiveness and disease progression. At least 12 molecular features were present, among which the immune-related feature was associated with drug responsiveness, indicating that pre-treatment anti-cancer immunity might dictate BCG responsiveness. We also identified disease progression-associated molecular features indicative of elevated cellular proliferation in post-treatment specimens. The progression-associated molecular features were validated in an extended cohort of BCG-treated bladder cancers. Our study advances understanding of the molecular mechanisms of BCG activity in bladder cancers and provides clinically relevant gene markers for evaluating and monitoring patients.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3