The Optimization of Machining Parameters for Milling Operations by Using the Nelder–Mead Simplex Method

Author:

Lee Yubin,Resiga Alin,Yi Sung,Wern ChienORCID

Abstract

The purpose of machining operations is to make specific shapes or surface characteristics for a product. Conditions for machining operations were traditionally selected based on geometry and surface finish requirements. However, nowadays, many researchers are optimizing machining parameters since high-quality products can be produced using more expensive and advanced machines and tools. There are a few methods to optimize the machining process, such as minimizing unit production time or cost or maximizing profit. This research focused on maximizing the profit of computer numerical control (CNC) milling operations by optimizing machining parameters. Cutting speeds and feed are considered as the main process variables to maximize the profit of CNC milling operations as they have the greatest effect on machining operation. In this research, the Nelder–Mead simplex method was used to maximize the profit of CNC milling processes by optimizing machining parameters. The Nelder–Mead simplex method was used to calculate best, worst, and second-worst value based on an initial guess. The possible range of machining parameters was limited by several constraints. The Nelder–Mead simplex method yielded a profit of 3.45 ($/min) when applied to a commonly used case study model.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous hybrid optimization of a SiO2 plasma etching mechanism;Journal of Vacuum Science & Technology A;2024-06-28

2. Machine parameter optimization for sustainable machining of magnesium alloys: a review of current research gaps and opportunities;Advances in Materials and Processing Technologies;2024-03-28

3. Development of a framework for sustainability assessment of the machining process through machining parameter optimisation technique;International Journal of Sustainable Engineering;2023-12-07

4. Sustainability of Methods for Augmented Ultra-Precision Machining;International Journal of Precision Engineering and Manufacturing-Green Technology;2023-08-27

5. Optimization of turning process parameters using a new hybrid evolutionary algorithm;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3