Predicting Number of Vehicles Involved in Rural Crashes Using Learning Vector Quantization Algorithm

Author:

Shaffiee Haghshenas Sina1ORCID,Guido Giuseppe1ORCID,Shaffiee Haghshenas Sami1,Astarita Vittorio1ORCID

Affiliation:

1. Department of Civil Engineering, University of Calabria, Via Bucci, 87036 Rende, Italy

Abstract

Roads represent very important infrastructure and play a significant role in economic, cultural, and social growth. Therefore, there is a critical need for many researchers to model crash injury severity in order to study how safe roads are. When measuring the cost of crashes, the severity of the crash is a critical criterion, and it is classified into various categories. The number of vehicles involved in the crash (NVIC) is a crucial factor in all of these categories. For this purpose, this research examines road safety and provides a prediction model for the number of vehicles involved in a crash. Specifically, learning vector quantization (LVQ 2.1), one of the sub-branches of artificial neural networks (ANNs), is used to build a classification model. The novelty of this study demonstrates LVQ 2.1’s efficacy in categorizing accident data and its ability to improve road safety strategies. The LVQ 2.1 algorithm is particularly suitable for classification tasks and works by adjusting prototype vectors to improve the classification performance. The research emphasizes how urgently better prediction algorithms are needed to handle issues related to road safety. In this study, a dataset of 564 crash records from rural roads in Calabria between 2017 and 2048, a region in southern Italy, was utilized. The study analyzed several key parameters, including daylight, the crash type, day of the week, location, speed limit, average speed, and annual average daily traffic, as input variables to predict the number of vehicles involved in rural crashes. The findings revealed that the “crash type” parameter had the most significant impact, whereas “location” had the least significant impact on the occurrence of rural crashes in the investigated areas.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3