Optimization Strategies for Atari Game Environments: Integrating Snake Optimization Algorithm and Energy Valley Optimization in Reinforcement Learning Models

Author:

Sarkhi Sadeq Mohammed Kadhm1ORCID,Koyuncu Hakan2ORCID

Affiliation:

1. Electrical and Computer Engineering Department, Altinbas University, 34200 Istanbul, Turkey

2. Computer Engineering Department, Altinbas University, 34217 Istanbul, Turkey

Abstract

One of the biggest problems in gaming AI is related to how we can optimize and adapt a deep reinforcement learning (DRL) model, especially when it is running inside complex, dynamic environments like “PacMan”. The existing research has concentrated more or less on basic DRL approaches though the utilization of advanced optimization methods. This paper tries to fill these gaps by proposing an innovative methodology that combines DRL with high-level metaheuristic optimization methods. The work presented in this paper specifically refactors DRL models on the “PacMan” domain with Energy Serpent Optimizer (ESO) for hyperparameter search. These novel adaptations give a major performance boost to the AI agent, as these are where its adaptability, response time, and efficiency gains start actually showing in the more complex game space. This work innovatively incorporates the metaheuristic optimization algorithm into another field—DRL—for Atari gaming AI. This integration is essential for the improvement of DRL models in general and allows for more efficient and real-time game play. This work delivers a comprehensive empirical study for these algorithms that not only verifies their capabilities in practice but also sets a state of the art through the prism of AI-driven game development. More than simply improving gaming AI, the developments could eventually apply to more sophisticated gaming environments, ongoing improvement of algorithms during execution, real-time adaptation regarding learning, and likely even robotics/autonomous systems. This study further illustrates the necessity for even-handed and conscientious application of AI in gaming—specifically regarding questions of fairness and addiction.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3