Integrated Network Pharmacology, Molecular Docking, Molecular Simulation, and In Vitro Validation Revealed the Bioactive Components in Soy-Fermented Food Products and the Underlying Mechanistic Pathways in Lung Cancer

Author:

Elkhalifa Abd Elmoneim O.1ORCID,Banu Humera1ORCID,Khan Mohammad Idreesh2ORCID,Ashraf Syed Amir1ORCID

Affiliation:

1. Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia

2. Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia

Abstract

Globally, lung cancer remains one of the leading causes of cancer-related mortality, warranting the exploration of novel and effective therapeutic approaches. Soy-fermented food products have long been associated with potential health benefits, including anticancer properties. There is still a lack of understanding of the active components of these drugs as well as their underlying mechanistic pathways responsible for their anti-lung cancer effects. In this study, we have undertaken an integrated approach combining network pharmacology and molecular docking to elucidate the mechanism of action of soy-fermented food products against lung cancer through simulation and in vitro validation. Using network pharmacology, we constructed a comprehensive network of interactions between the identified isoflavones in soy-fermented food products and lung cancer-associated targets. Molecular docking was performed to predict the binding affinities of these compounds with key lung cancer-related proteins. Additionally, molecular simulation was utilized to investigate the stability of the compound–target complexes over time, providing insights into their dynamic interactions. Our results identified daidzein as a potential active component in soy-fermented food products with high binding affinities towards critical lung cancer targets. Molecular dynamic simulations confirmed the stability of the daidzein–MMP9 and daidzein–HSP90AA1 complexes, suggesting their potential as effective inhibitors. Additionally, in vitro validation experiments demonstrated that treatment with daidzein significantly inhibited cancer cell proliferation and suppressed cancer cell migration and the invasion of A549 lung cancer cells. Consequently, the estrogen signaling pathway was recognized as the pathway modulated by daidzein against lung cancer. Overall, the findings of the present study highlight the therapeutic potential of soy-fermented food products in lung cancer treatment and provide valuable insights for the development of targeted therapies using the identified bioactive compounds. Further investigation and clinical studies are warranted to validate these findings and translate them into clinical applications for improved lung cancer management.

Funder

Deputy for Research and Innovation, Ministry of Education

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference86 articles.

1. Lung cancer treatment advances in 2022;Singhi;Cancer Investig.,2023

2. Mechanisms of small cell lung cancer metastasis;Ko;EMBO Mol. Med.,2021

3. Cancer treatment and survivorship statistics, 2022;Miller;CA A Cancer J. Clin.,2022

4. Epidemiology of lung cancer;Alberg;Chest,2003

5. Global epidemiology of lung cancer;Barta;Ann. Glob. Health,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3