Nonlinear Quantile Mixed-Effects Models for Prediction of the Maximum Crown Width of Fagus sylvatica L., Pinus nigra Arn. and Pinus brutia Ten.

Author:

Raptis Dimitrios I.,Kazana Vassiliki,Kechagioglou Stavros,Kazaklis Angelos,Stamatiou ChristosORCID,Papadopoulou Dimitra,Tsitsoni Thekla

Abstract

In the current study, a novel approach combining quantile regression with nonlinear mixed-effects (QR-NLME) modeling was applied to predict the maximum crown width (cwmax) of three economically important forest species—the European beech (Fagus sylvatica L.), the black pine (Pinus nigra Arn.), and the Calabrian pine (Pinus brutia Ten.) at tree level. A power QR-NLME model was fitted first to a dataset including 1414 European beech trees obtained from 29 randomly distributed sample plots, 770 black pine trees from 25 sample plots, and 1880 Calabrian pine trees from 41 sample plots in Greece, to predict the cwmax at tree level. Additionally, a nonlinear mixed-effects model (NLME) was fitted to the same dataset to predict the average crown width at tree level for all species. In the second stage, the crown competition factor (CCF) was estimated based on the population average response of the cwmax predictions. The proposed approach presented sound results when compared with the outcomes of relevant models from other regions fitted to open-grown tree data, and therefore, it can be well implemented on clustered data structures, in cases of absence of open-grown tree data.

Funder

European Regional Fund and the Eastern Macedonia and Thrace Region of Greece

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3