A Method of Human Activity Recognition in Transitional Period

Author:

Chen LeiORCID,Fan ShuruiORCID,Kumar Vikram,Jia Yating

Abstract

Human activity recognition (HAR) has been increasingly used in medical care, behavior analysis, and entertainment industry to improve the experience of users. Most of the existing works use fixed models to identify various activities. However, they do not adapt well to the dynamic nature of human activities. We investigated the activity recognition with postural transition awareness. The inertial sensor data was processed by filters and we used both time domain and frequency domain of the signals to extract the feature set. For the corresponding posture classification, three feature selection algorithms were considered to select 585 features to obtain the optimal feature subset for the posture classification. And We adopted three classifiers (support vector machine, decision tree, and random forest) for comparative analysis. After experiments, the support vector machine gave better classification results than other two methods. By using the support vector machine, we could achieve up to 98% accuracy in the Multi-class classification. Finally, the results were verified by probability estimation.

Publisher

MDPI AG

Subject

Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3