Development of the Non-Iterative Supervised Learning Predictor Based on the Ito Decomposition and SGTM Neural-Like Structure for Managing Medical Insurance Costs

Author:

Tkachenko Roman,Izonin IvanORCID,Vitynskyi Pavlo,Lotoshynska Nataliia,Pavlyuk Olena

Abstract

The paper describes a new non-iterative linear supervised learning predictor. It is based on the use of Ito decomposition and the neural-like structure of the successive geometric transformations model (SGTM). Ito decomposition (Kolmogorov–Gabor polynomial) is used to extend the inputs of the SGTM neural-like structure. This provides high approximation properties for solving various tasks. The search for the coefficients of this polynomial is carried out using the fast, non-iterative training algorithm of the SGTM linear neural-like structure. The developed method provides high speed and increased generalization properties. The simulation of the developed method’s work for solving the medical insurance costs prediction task showed a significant increase in accuracy compared with existing methods (common SGTM neural-like structure, multilayer perceptron, Support Vector Machine, adaptive boosting, linear regression). Given the above, the developed method can be used to process large amounts of data from a variety of industries (medicine, materials science, economics, etc.) to improve the accuracy and speed of their processing.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An interpretable ensemble structure with a non-iterative training algorithm to improve the predictive accuracy of healthcare data analysis;Scientific Reports;2024-06-05

2. A Sales Forecasting Model for New-Released and Short-Term Product: A Case Study of Mobile Phones;Electronics;2023-07-28

3. An Overview of IoT for Smart Healthcare Technologies;2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES);2023-04-28

4. Incorporating Deep Learning Methodologies into the Creation of Healthcare Systems;2023 International Conference on Artificial Intelligence and Smart Communication (AISC);2023-01-27

5. Machine Learning for Identification of Immedicable Renal Disease;2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT);2023-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3