An Evaluation of the Information Technology of Gene Expression Profiles Processing Stability for Different Levels of Noise Components

Author:

Babichev Sergii

Abstract

This paper presents the results of research concerning the evaluation of stability of information technology of gene expression profiles processing with the use of gene expression profiles, which contain different levels of noise components. The information technology is presented as a structural block-chart, which contains all stages of the studied data processing. The hybrid model of objective clustering based on the SOTA algorithm and the technology of gene regulatory networks reconstruction have been investigated to evaluate the stability to the level of the noise components. The results of the simulation have shown that the hybrid model of the objective clustering has high level of stability to noise components and vice versa, the technology of gene regulatory networks reconstruction is rather sensitive to the level of noise component. The obtained results indicate the importance of gene expression profiles preprocessing at the early stage of the gene regulatory network reconstruction in order to remove background noise and non-informative genes in terms of the used criteria.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improvement of the ANN-Based Prediction Technology for Extremely Small Biomedical Data Analysis;Technologies;2024-07-12

2. Towards Data Normalization Task for the Efficient Mining of Medical Data;2022 12th International Conference on Advanced Computer Information Technologies (ACIT);2022-09-26

3. An approach towards the response surface linearization via ANN-based cascade scheme for regression modeling in Healthcare;Procedia Computer Science;2022

4. An Approach Toward Numerical Data Augmentation and Regression Modeling Using Polynomial-Kernel-Based SVR;Proceedings of International Conference on Data Science and Applications;2021-11-23

5. An approach towards missing data management using improved GRNN-SGTM ensemble method;Engineering Science and Technology, an International Journal;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3