Abstract
In this study, we developed a surface plasmon resonance (SPR) sensor chip based on 2,4,6-trinitrotoluene (TNT) recognition peptide-modified single-walled carbon nanotubes (SWCNTs). The carboxylic acid-functionalized SWCNTs were immobilized on a 3-aminopropyltriethoxysilane (APTES)-modified SPR Au chip surface. Through π-stacking between the aromatic amino acids and SWCNTs, the TNT recognition peptide TNTHCDR3 was immobilized onto the surface of the SWCNTs. The peptide–SWCNTs-modified sensor surface was confirmed and evaluated by atomic force microscope (AFM) observation. The peptide–SWCNTs hybrid SPR sensor chip exhibited enhanced sensitivity with a limit of detection (LOD) of 772 ppb and highly selective detection compared with commercialized carboxymethylated dextran matrix sensor chips.
Funder
Japan Science and Technology Agency
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献