A High Voltage Gain Interleaved DC-DC Converter Integrated Fuel Cell for Power Quality Enhancement of Microgrid

Author:

Mumtaz Farhan1ORCID,Yahaya Nor Zaihar1,Meraj Sheikh Tanzim1ORCID,Singh Narinderjit Singh Sawaran2,Rahman Md. Siddikur1ORCID,Hossain Lipu Molla Shahadat3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia

2. Faculty of Data Science and Information Technology, INTI International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia

3. Department of Electrical and Electronic Engineering, Green University of Bangladesh, Dhaka 1207, Bangladesh

Abstract

Fuel cells have drawn a lot of interest in recent years as one of the most promising alternative green power sources in microgrid systems. The operating conditions and the integrated components greatly impact the quality of the fuel cell’s voltage. Energy management techniques are required in this regard to regulate the fuel cell’s power in a microgrid. The active/reactive power in the microgrid should be adjusted in line with US Energy Star’s regulations whereas the grid current needs to follow the standard set by IEEE 519 2014 to enhance the power quality of the electrical energy injected into the microgrid. Uncontrolled energy injection from the fuel cell can have serious impacts including superfluous energy demand, overloading, and power losses, especially in high power and medium voltage systems. Although fuel cells have many advantages, they cannot yet produce high voltages individually to compensate for the demand of a microgrid system. Due to these reasons, the fuel cell must be interfaced with a DC-DC converter. This research proposes a novel high voltage gain converter integrated 1.26 kW fuel cell for microgrid power management that can boost the fuel cell’s voltage up to 20 times. Due to this high voltage gain, the voltage and current ripple of the fuel cell is also reduced substantially. According to the analysis, the proposed converter demonstrated optimal performance when compared to the other converters due to its high voltage gain and extremely low voltage ripple. As a result, the harmonic profile of the microgrid current persists with a reduced THD of 3.22% and a very low voltage ripple of 4 V. To validate the converter’s performance, along with extensive simulation, a hardware prototype was also built. The voltage of the fuel cell is regulated using a simplified proportional integral controller. The operating principle of the converter integrated fuel cell along with its application in microgrid power management is demonstrated. A comparative analysis is also shown to verify how the proposed converter is improving the system’s performance when compared against other converters.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3