The Use of Field Olfactometry in the Odor Assessment of a Selected Mechanical–Biological Municipal Waste Treatment Plant within the Boundaries of the Selected Facility—A Case Study

Author:

Pawnuk Marcin1ORCID,Sówka Izabela1ORCID,Naddeo Vincenzo2ORCID

Affiliation:

1. Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

2. Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084 Fisciano, SA, Italy

Abstract

Odor management plans indicate the need to identify odor sources in waste management facilities. Finding the right tool for this type of task is a key element. This article covers a new approach for odor quantification and source identification at a selected waste management facility by coupling field olfactometry and the spatial interpolation method, such as inverse weighted distance. As the results show, this approach works only partially. Field olfactometry seems to be a suitable tool for odor identification that could be an instrument incorporated into odor management plans as it allowed for recognition of most odor-generating places at the selected facility, i.e., waste stabilization area, green waste storage area, and bioreactors. However, spatial distributions obtained by the selected interpolation method are characterized by high errors during cross-validation, and they tend to overestimate odor concentrations. The substantial weakness of the selected interpolation method is that it cannot handle points where the odor concentration is below the detection threshold. Therefore, the usefulness of such a method is questionable when it comes to odor management plans. Since field olfactometry is a reliable tool for odor measurements, further research into computational methods is needed, including advanced interpolation methods or dispersion modeling based on field olfactometry data.

Funder

European Union

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference49 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3