Carbazole Degradation and Genetic Analyses of Sphingobium sp. Strain BS19 Isolated from Antarctic Soil

Author:

Sato Kenta1,Take Seiryu1,Ahmad Siti Aqlima2ORCID,Gomez-Fuentes Claudio3ORCID,Zulkharnain Azham1ORCID

Affiliation:

1. Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan

2. Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

3. Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes 01855, Punta Arenas 6210427, Chile

Abstract

The Antarctic region is facing a higher risk of hydrocarbon pollution due to increased human activities. Compounds such as polycyclic aromatic hydrocarbons (PAHs) and heterocyclic compounds available in fuel are highly stable and can reside in the environment for prolonged periods if left untreated. The isolation of native strains is needed to develop bioremediation applications suitable for Antarctica. Strain BS19 was isolated as heterocyclic compound carbazole-degrading bacterium from Antarctic soil through culture enrichment. The 16S rRNA gene sequences identified strain BS19 as a member of the Sphingonium genus. Strain BS19 could remove 75% of carbazole after 15 days of culture at 15 °C. Whole genome sequencing resulted in incomplete genomes of 4.77 Mb in 96 contigs with the lowest GC content among Sphingobium sp. strains. The analyses revealed car gene cluster and ant genes and cat gene cluster required for the complete metabolism of carbazole as a source of carbon and energy. The comparison of the car gene cluster showed a similarity to the car gene cluster of Novosphingobium KA1. The expression of the car gene cluster was confirmed with an RT-PCR analysis indicating the involvement of the predicted genes in carbazole degradation. The findings from this study could provide more insight into developing bioremediation applications and approaches for Antarctica and other cold environments.

Funder

Sultan Mizan Antarctic Research Foundation

Centro de Investigacion y Monitoreo Ambiental Antàrctico (CIMAA) Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3