Super-Resolving Methodology for Noisy Unpaired Datasets

Author:

Min Sung-JunORCID,Jo Young-Su,Kang Suk-JuORCID

Abstract

Although it is possible to acquire high-resolution and low-resolution paired datasets, their use in directly supervised learning is impractical in real-world applications. In the present work, we focus on a practical methodology for image acquisition in real-world conditions. The main method of noise reduction involves averaging multiple noisy input images into a single image with reduced noise; we also consider unpaired datasets that contain misalignments between the high-resolution and low-resolution images. The results show that when more images are used for average denoising, better performance is achieved in the super-resolution task. Quantitatively, for a fixed noise level with a variance of 60, the proposed method of using 16 images for average denoising shows better performance than using 4 images for average denoising; it shows 0.68 and 0.0279 higher performance for the peak signal-to-noise ratio and structural similarity index map metrics, as well as 0.0071 and 1.5553 better performance for the learned perceptual image patch similarity and natural image quality evaluator metrics, respectively.

Funder

National Research Foundation of Korea

Samsung

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Zoom to learn, learn to zoom;Zhang;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019

2. Dslr-quality photos on mobile devices with deep convolutional networks;Ignatov;Proceedings of the IEEE International Conference on Computer Vision,2017

3. Neural Network for Nanoscience Scanning Electron Microscope Image Recognition

4. Real-world super-resolution via kernel estimation and noise injection;Ji;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020

5. Super-resolution: a comprehensive survey

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3