Optimal Scheduling Strategy for Urban Distribution Grid Resilience Enhancement Considering Renewable-to-Ammonia Coordination

Author:

Jiang Li1,Hu Fei1,Zong Shaolei1,Yan Hui1,Kong Wei1,Chai Xiaoguang1,Zhang Lu2

Affiliation:

1. State Grid Wuxi Power Supply Company, Wuxi 214000, China

2. College of Information and Electrical Engineering, China Agricultural University, Beijing 100091, China

Abstract

The integration of numerous distributed energy sources into the power system offers exciting opportunities to enhance the resilience of distribution networks. It is worth noting that the renewable-to-ammonia system has the potential to alleviate the multi-temporal and spatial imbalance of the power system. Therefore, this paper proposes a mathematical model for a renewable-to-ammonia system, taking into account the material balance and power balance of each unit. Based on this, this paper further explores the optimization scheduling method for flexible ammonia loads in distribution networks. A relaxation method for branch flow models in distribution networks based on second-order cone programming is proposed. An optimization scheduling model for flexible ammonia loads in distribution networks is constructed to minimize network loss. Moreover, considering the environmental advantages of the renewable-to-ammonia system, this paper compares the changes in hydrogen production technologies under different carbon emission constraints. Finally, a case study of the IEEE 33-node system is adopted to verify the effectiveness of the proposed model and method. It indicates that the renewable-to-ammonia system has environmental benefits and can reduce network loss to a certain extent.

Funder

Research and Application of Resilience Enhancement Technology for Urban Power Grids in Response to Extreme Natural Disasters

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3