Packing Characteristics and Heat Transfer Performance of Non-Spherical Particles for Concentrated Solar Power Applications

Author:

Boribayeva Aidana1,Gvozdeva Xeniya1,Golman Boris1ORCID

Affiliation:

1. Chemical and Materials Engineering Department, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

Concentrated solar power (CSP) technology relies on thermal energy storage to extend operating hours, making the selection of heat storage media crucial for system efficiency. Bauxite powder, known for its availability and high-temperature stability, emerges as a potential alternative to conventional materials in CSP systems. This study employed the discrete element method to investigate the influence of particle shape on the packing and heat transfer characteristics of non-spherical particles. The research focused on assessing the impact of particle sphericity by comparing spherical particles with non-spherical shapes, including ellipsoids and cylinders, and exploring the effect of varying the aspect ratio (AR) of the cylindrical particles. Particle sphericity significantly influenced packing morphology, with the cylindrical particles exhibiting distinct structural patterns that were absent in the ellipsoidal particles, and strongly affected heat transfer, as observed in the average temperature variations within the packed bed over time. The cylinders with higher aspect ratios demonstrated enhanced heat transfer rates, driven by the increased contact area and coordination numbers, despite their predominant misalignment with the heat flux direction. These insights are valuable for optimizing thermal energy storage media in CSP systems.

Funder

Nazarbayev University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3